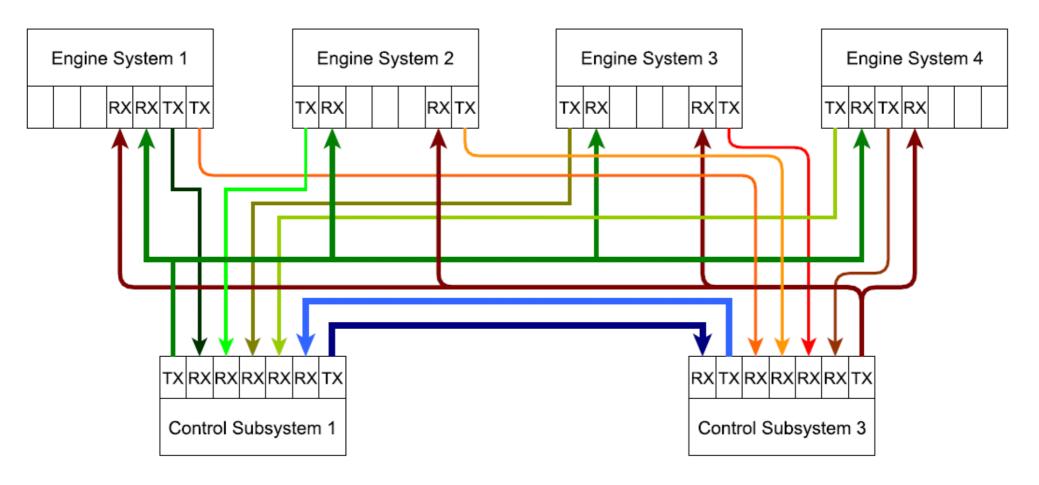
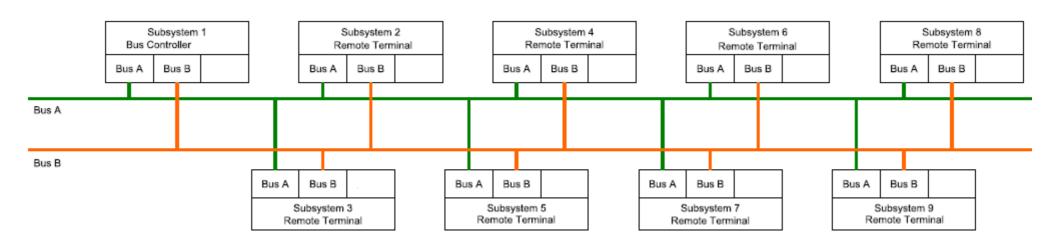
Коммутируемые сети в ИУС РВ

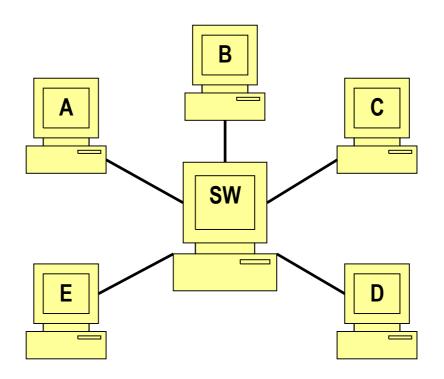

Кафедра АСВК, Лаборатория Вычислительных Комплексов Балашов В.В.

Бортовые сети

- Бортовые сети обеспечение связи между бортовыми подсистемами
 - Надежная доставка
 - Соблюдение требований реального времени

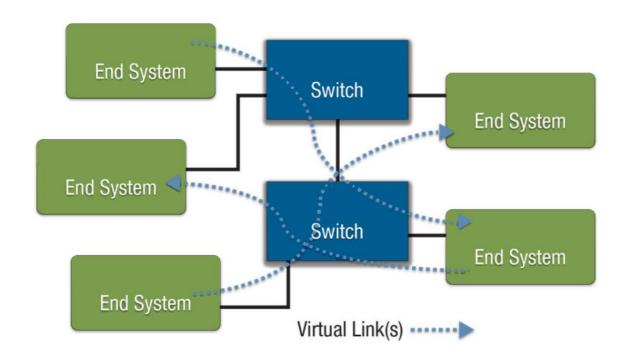


Каналы точка-точка


- Много кабелей
- Пропускная способность: недоиспользование, нехватка, сложность наращивания
- Сложно закладывать резерв
- Проблемы с передачей данных по сложному маршруту
- Низкая адаптивность (невозможна реконфигурация)

Интеграция каналов, мультиплексирование трафика

- Много каналов точка-точка → общая шина для многих потоков данных
- Проблема коллизий при доступе к шине
 - синхронизация доступа (нужно единое время)
 - централизованное управление (накладные расходы...)
- Последовательная обработка запросов => задержки
- Нет устойчивости к «генерации» в канале при выходе абонента из строя

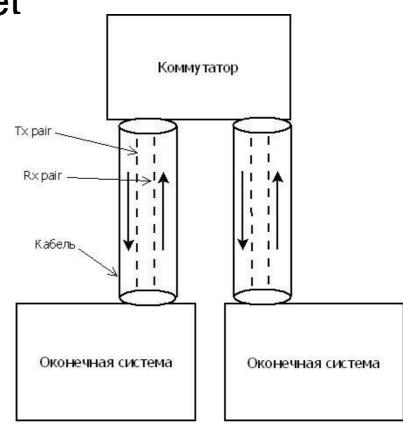

Коммутатор: параллелизм обмена

- Дуплексные (двунаправленные) каналы
- Частичный параллелизм обмена
 - A→B || B→C || C→D нет конфликта A→B, C→B конфликт на ли

- конфликт на линии SW→B; как делить линию?
- Неустойчивость к «генерации»
- Проблема мультиплексирования потоков данных при отправке
- Оставшиеся конфликты как лечить?
 - синхронизация доступа (нужно единое время)
 - централизованное управление (накладные расходы...)
 - верхние оценки задержек (а если между А и В большой поток?)

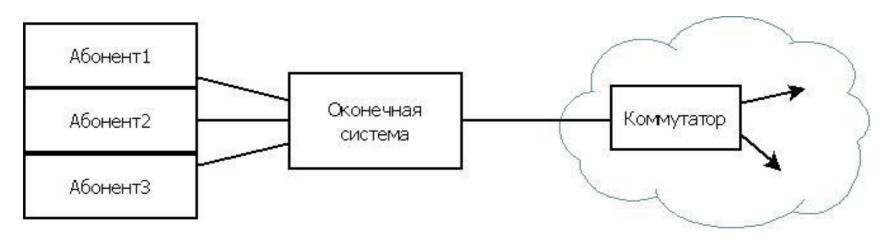
Виртуальные каналы

- Разделение пропускной способности, разграничение потоков данных
 - => пригодность для сложного трафика из множества потоков данных
- Гарантированные верхние границы задержек
- Резервирование, гибкость реконфигурации
- Реализация: согласованные действия отправителя и коммутаторов
- Устойчивость к «генерации»
 - коммутатор сбрасывает слишком частые кадры

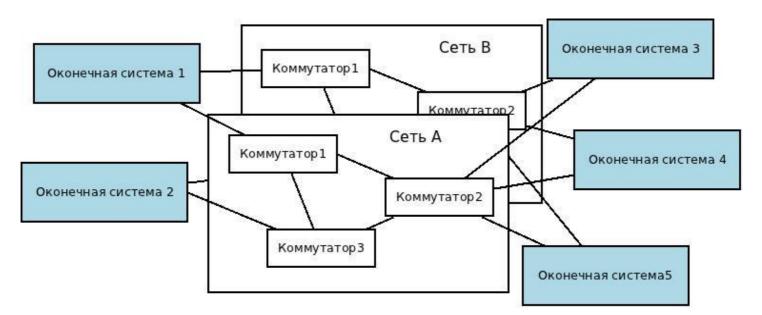

Протоколы коммутируемых сетей с поддержкой ВК

- AFDX (на базе 100 Мбит Ethernet)
- FC-AE-ASM-RT (на базе Fibre Channel)

Стандарт AFDX


• Avionics Full-Duplex Ethernet (AFDX) – стандарт построения бортовых сетей на основе протокола Ethernet

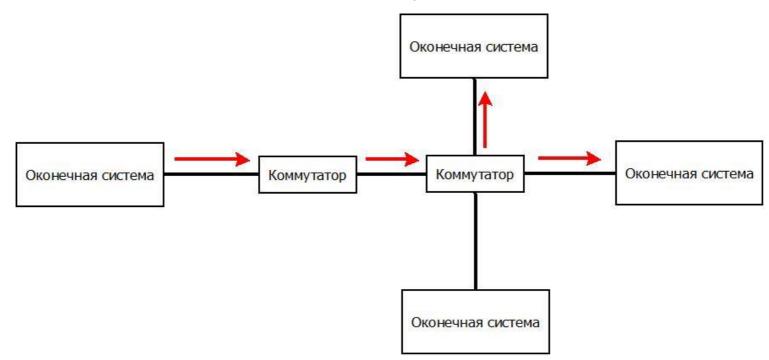
- Основан на протоколе Ethernet
- Полнодуплексная передача данных
- Позволяет достичь пропускной способности 100 Мбит/с на одном физическом соединении


Архитектура сети AFDX

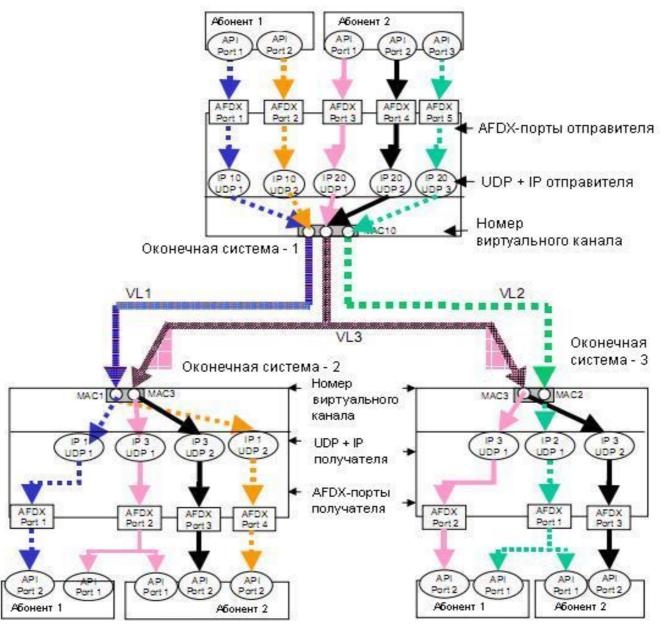
- Компоненты:
 - Абоненты (бортовые подсистемы, отправители и получатели данных)
 - Оконечные системы интерфейс между абонентами и сетью
 - Коммутаторы и физические соединения

Архитектура сети AFDX

- Дублирование сети для увеличения надежности передачи
 - Кадры передаются одновременно в обе сети
 - При диагностировании ошибки (например, несовпадение контрольной суммы) в одной сети данные берутся из другой сети
 - На оконечной системе производится сброс кадра в случае, если кадр уже пришел из другой сети



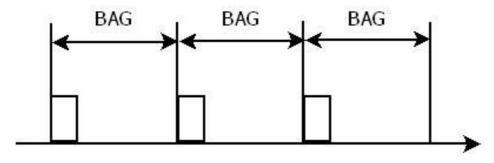
Стек протоколов


- Канальный уровень
 - Ethernet
 - Виртуальные каналы
 - Маршрутизация
- Сетевой уровень
 - ІР (без маршрутизации)
- Транспортный уровень
 - UDP

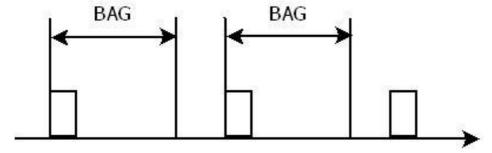
Стек протоколов

- Виртуальные каналы
 - Одна оконечная система отправитель и одна или более оконечная система – получатель
 - Маршрут следования кадров виртуального канала прописан статически в коммутаторах

Стек протоколов



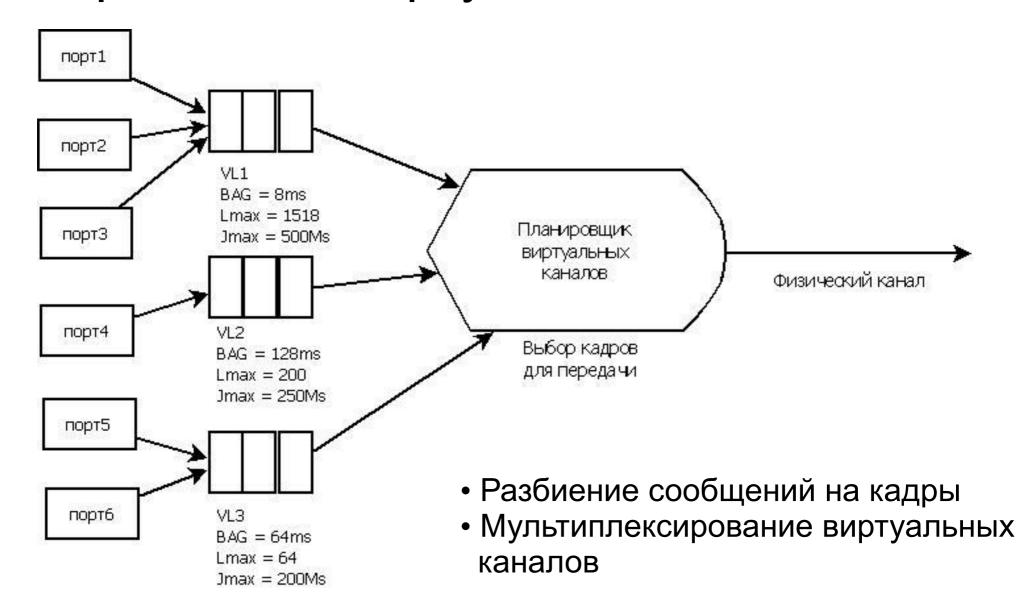
Параметры виртуальных каналов


- Для каждого виртуального канала вводятся следующие параметры:
 - BAG Bandwidth Allocation Gap минимальный интервал времени вежду началами выдачи последовательных кадров на одном виртуальном канало (1-128 мс, является степенью двойки)
 - Lmax максимальный размер кадра (<=1518байт)
 - Jmax максимально допустимое отклонение между кадрами от BAG

Параметры виртуальных каналов: *BAG*

• Использование *BAG* для достижения максимальной выделенной пропускной способности:

• Альтернативный вариант:

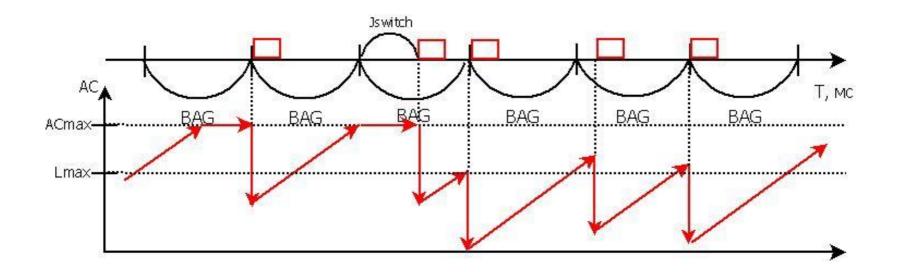


• В дальнейшем рассматривается только первый вариант передачи, без промежутков между соседними *BAG*

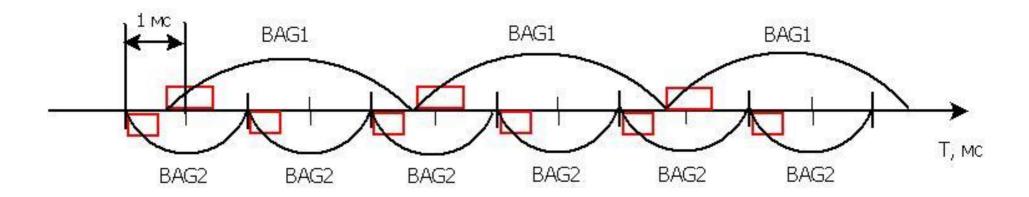
Пропускная способность виртуальных каналов


- Вычисление:
 - Bandwidth = Lmax / BAG
 - BAG = 32 MC
 - *Lmax* = 200 байт
 - Bandwidth = 200 байт / (32 / 1000) сек = 6250 байт/сек
 - Ограничение на зарезервированную пропускную способность на проводе:
 - $\sum_{VL=1.n} L_{VL,\text{max}} / BAG_{VL} \leq 100M6um/ce\kappa$

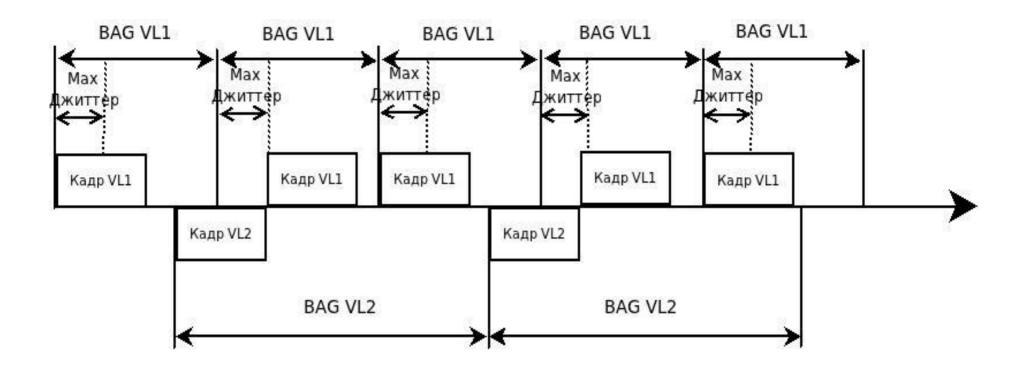
Управление виртуальными каналами


Контроль трафика на коммутаторе

- Контроль прихода кадров на соответствие *BAG* и *Jmax:*
 - Производится на входном порту коммутатора
 - Используется алгоритм, основанный на вычислении кредита
 - AC кредит, растет с течением времени до значения ACmax
 - При приходе кадра АС уменьшается на размер кадра, если кредита не хватает – кадр сбрасывается


Контроль трафика на коммутаторе

- Кредит соответствует количеству байт, которые пропускает канал
 - За время *BAG* кредит увеличивается на *Lmax*
 - ACmax соответствует количеству байт, которое позволяет пропустить 2 кадра за (*BAG Jmax*)
 - Случай с неравномерной передачей кадров:


Формирование трафика

- При формировании трафика на отправителе
 - мультиплексирование
- При мультиплексировании определяется значение джиттера
- С нулевым джиттером:

Формирование трафика

• Мультиплексирование с ненулевым джиттером

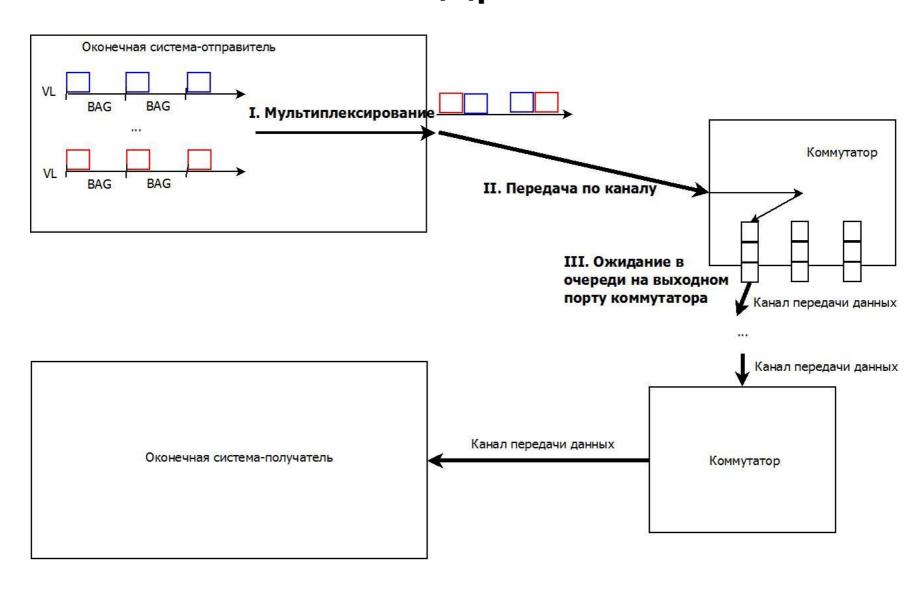
Коммутатор

- Функции коммутатора:
 - Маршрутизация кадров по пути следования виртуальных каналов (пути виртуальных каналов конфигурируются статически)
 - Фильтрация трафика (контроль целостности кадра, контроль следования кадра по виртуальному каналу)
 - Контроль трафика
 - размер кадра (не должен превышать Lmax)
 - BAG, Jmax
 - нарушение => сброс кадра

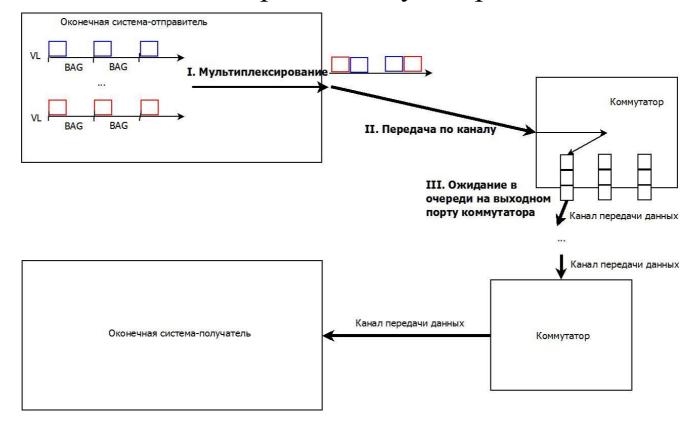
Литература

1. Стандарт

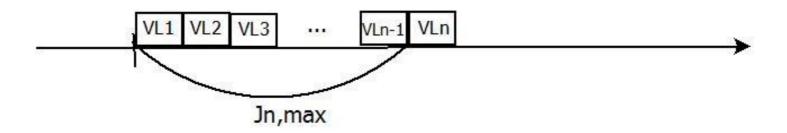
Aircraft Data Network. Part 7. Avionics Full Duplex Switched Ethernet (AFDX) Network. // Aeronautical Radio, Inc. – 2012.


2. AFDX® / ARINC 664 Tutorial. TechSAT GmbH, Poing, 2008.

Задачи проектирования сети AFDX


- Дано: потоки данных, требования к их передаче в реальном времени
 - размер сообщения
 - частота передачи
 - макс. допустимый джиттер (end-to-end)
 - макс. допустимая задержка (end-to-end)
- Требуется:
 - построить систему виртуальных каналов и рассчитать их параметры (BAG, Lmax)
 - рассчитать конфигурационные параметры сетевых устройств – коммутаторов, абонентов (в т.ч. Jmax)

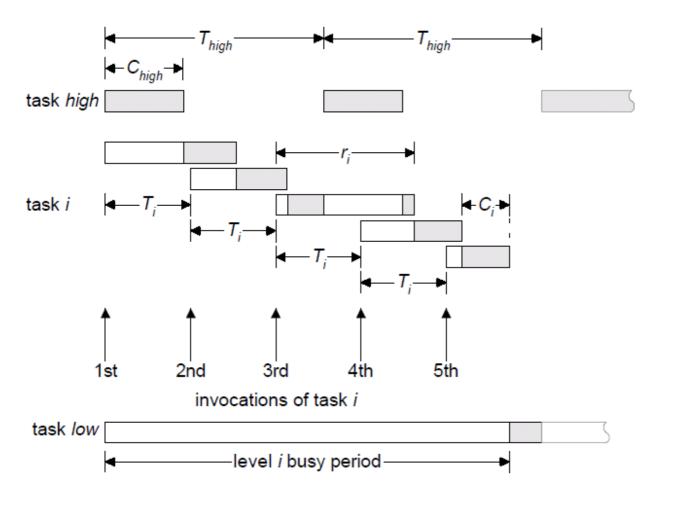
- Необходима для оценки длительности передачи сообщения
 - Актуальность: требования реального времени, длительность не должна превышать заданных значений
 - Длительность вычисляется с момента поступления кадра для выдачи в канал до момента поступления кадра на оконечную систему-получатель


- Методы:
 - Response-time analysis
 - Network Calculus
 - Trajectory Approach
 - Model checking
 - Simulation approach

- •Длительность передачи кадра:
 - -максимальный джиттер на отправителе
 - -длительность передачи по каналам
 - -задержки на выходных портах коммутаторов

- •Мультиплексирование
 - •При мультиплексировании может возникать джиттер
 - •Максимальная задержка при максимальном джиттере
 - •Максимальный размер джиттера при ожидании всех кадров других виртуальных каналов

- •Мультиплексирование
 - •Вычисление максимального джиттера на отправителе

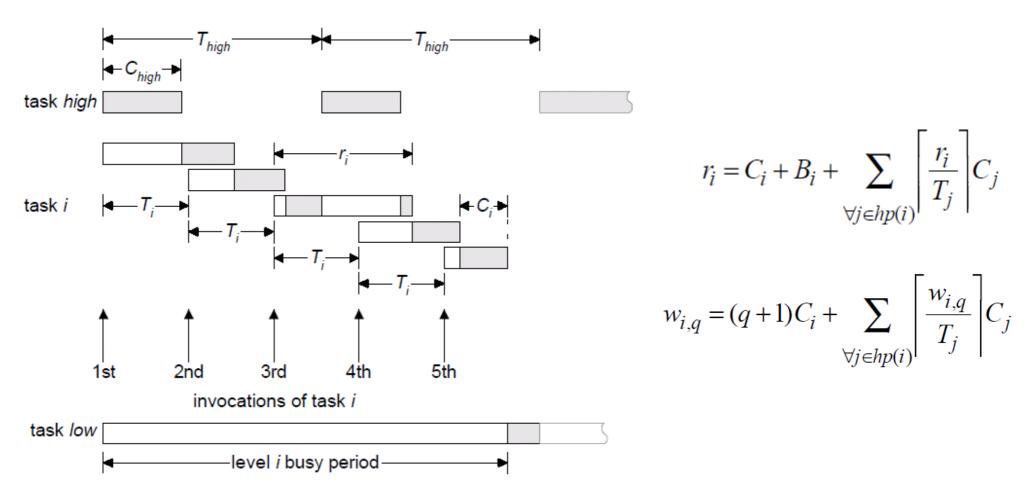

$$J_{\max} \le 40\mu s + \frac{\sum_{i \in VLs} L_{i,\max}}{R}$$

- $\bullet VLs$ множество виртуальных каналов, формируемых на оконечной системе-отправителе
- $\bullet R$ скорость выдачи данных на канал (100 Мбит/сек)
- •40 мкс технический джиттера (время обработки кадра)

- •Длительность передачи кадров по каналам
 - $\bullet R$ скорость выдачи данных на канал (100 Мбит/сек)
 - $\bullet n$ количество каналов передачи данных на пути следования кадра
 - •Длительность передачи кадра по каналам:

$$t_{links} = n \cdot \frac{L_{max}}{R}$$

Оценка задержки от кадров с других виртуальных каналов

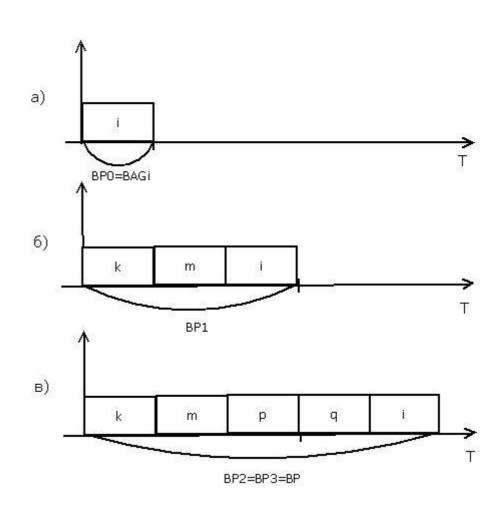

$$r_i = C_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{r_i}{T_j} \right\rceil C_j$$

$$r_i^{n+1} = C_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{r_i^n}{T_j} \right\rceil C_j$$

$$r_i = C_i + B_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{r_i}{T_j} \right\rceil C_j$$

- •Задержки от кадров с других входов на тот же выход
- •Метод: анализ времени отклика

Оценка задержки от кадров с других виртуальных каналов

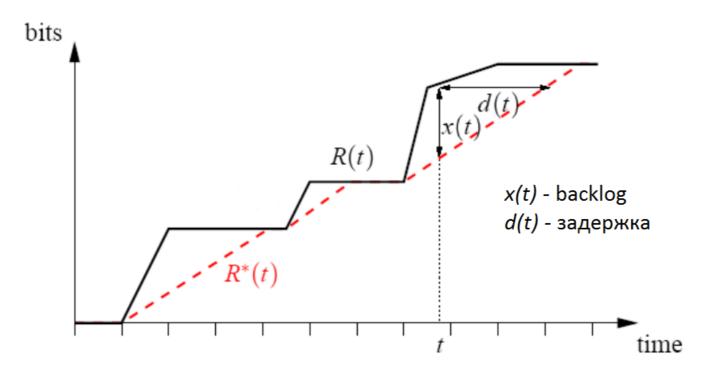

- •Задержки от кадров с других входов на тот же выход
- •Метод: анализ времени отклика

- •Вычисление максимальной задержки в очереди на выходном порту коммутатора на основе Response Time Analysis
 - •Рассматривается некоторый элемент сети (в данном случае буфер коммутатора)
 - •Busy period максимальный период времени, в течение которого очередь непуста
 - •Оценивается итеративно

- \bullet BP(0) = BAG начальная оценка busy period
- •BP(1) = сколько кадров других виртуальных каналов может прийти за BP(0) * длительность выдачи
- •BP(2) = ... через BP(1)

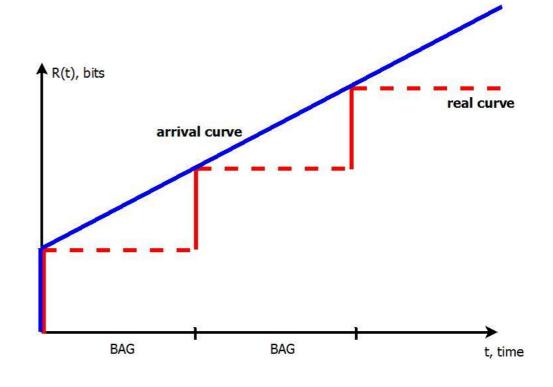
•...

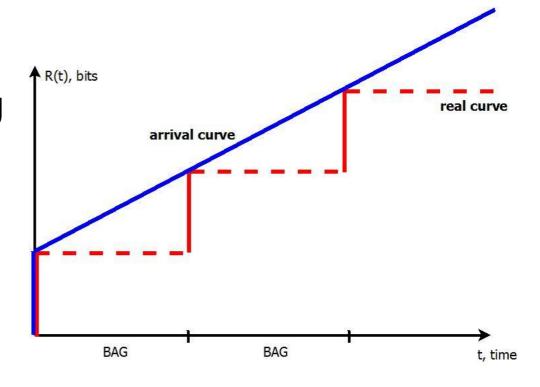
 $\bullet BP(n) = BP(n-1)$



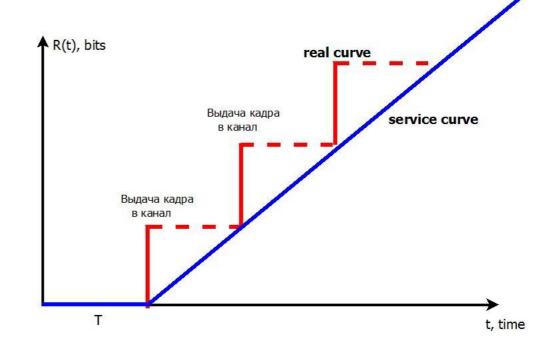
- •Вычисление максимальной задержки в очереди на выходном порту коммутатора на основе Network Calculus
 - •Рассматривается некоторый элемент сети (в данном случае буфер коммутатора)
 - •Функция потока:
 - $\bullet R(t)$ количество бит, прошедших через данную точку сети за интервал [0,t]

- $\bullet R(t)$ количество бит, прошедших через данную точку сети за интервал [0,t]
 - $\bullet R(t)$ функция потока на входе буфера
 - •R*(t) функция потока на выходе буфера
 - $\cdot R(t) \ge R^*(t)$

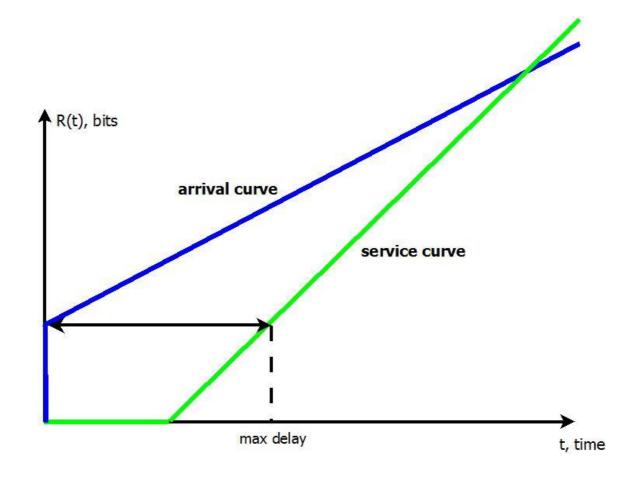



x(t) – backlog, соответствует размеру буфера в момент t

- arrival curve используется для описания входного потока
 - Кривая не должна быть ниже R(t) иначе может получиться заниженная оценка
 - Обычно используется линейная функция, как на рисунке

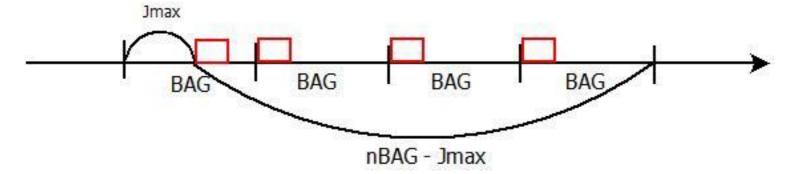


- $a(t) = r^*t + l$
 - r скоростьпоступления данных
 - / / начальный backlog
- В случае одного виртуального канала AFDX (без учета джиттера):


$$a(t) = (L_{max} / BAG) \cdot t + L_{max}$$

- Service curve используется для описания поведения компоненты системы (в данном случае – буфер со стратегией FIFO
 - Не должна превышать $R^*(t)$
 - FIFO: $\beta(t) = R[t-T]^+$
 - R скорость выдачи данных в канал
 - Т задержка выдачи кадра

• Использование arrival curve и service curve для получения оценки наихудшей задержки:



- Несколько виртуальных каналов на один буфер
 - arrival curve как сумма соответствующих кривых (аддитивность)

$$a(t) = \sum_{vl} (L_{vl,max} / BAG_{vl}) \cdot t + \sum_{vl} L_{vl,max}$$

- Оценка максимальной задержки для каждого из виртуальных каналов на данном буфере совпадает
- Максимальная задержка соответствует ожиданию передачи всех кадров других виртуальных каналов

- •Учет максимального джиттера в arrival curve
 - -3а n*BAG-Jmax приходит п кадров
 - -3а время t приходит $\left[\frac{t+J_{max}}{BAG}\right]+1$ кадров (т.к. в момент t=0 приходит первый кадр)
 - -arrival curve: $a(t) = \left(\frac{t + J_{max}}{BAG} \right) + 1 \cdot L_{max}$
 - —линейный вид: $a(t) = \frac{t}{BAG} \cdot L_{max} + L_{max} (1 + \frac{J_{max}}{BAG})$

- •2 экстремальных случая при прохождении кадра через коммутатор:
 - –Пустая очередь, задержка = 0
 - -Очередь максимального размера: max_delay (вычисляется с помощью Network Calculus)
- •Джиттер отклонение между максимальной и минимальной задержкой
- •При прохождении через каждый коммутатор максимальный джиттер увеличивается!
- •Cooтветственно, меняется arrival curve для виртуального канала

Специфика FC-RT

- •Высокоскоростные оптические каналы (1 Гбит/с)
- •Наличие приоритетов сообщений
- •Отсутствие BAG все кадры сообщения выдаются отправителем подряд (если оно не вытеснено высокоприоритетным сообщением)
- •Переконфигурирование сети «на лету»

Литература

- 1. Scharbarg, Jean-Luc, and Christian Fraboul. *Methods and Tools for the Temporal Analysis of Avionic Networks*. 2010.
- 2. Le Boudec, J.-Y. & Thiran, P. *Network Calculus: A Theory of Deterministic Queuing*. Systems for the Internet, Vol. 2050 of Lecture Notes in Computer Science, Springer-Verlag. 2001.
- 3. Gutiérrez, J. Javier, J. Carlos Palencia, and Michael González Harbour. Response time analysis in AFDX networks with subvirtual links and prioritized switches. XV Jornadas de Tiempo Real, Santander. 2012.
- 4. FIXED PRIORITY SCHEDULING OF HARD REAL-TIME SYSTEMS. K.W. Tindell. Ph.D. Thesis, University of York, 1995